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APPROXIMATE ANALYTICAL SOLUTIONS FOR HYPERSONIC

SLENDER POWER LAW BODIES

By HAROLD _IIRELS

FLOW OVER

SUMMARY

Approximate analytical solutb)ns are pre,_'ented

for two-dimensional (z= 0) amt axL_?tmmetric (z= 1)
hypersonic flo w over blunt-nosed slender bodie,_ whose

6"hapes fdlow a power law variation. In particular,

the body ._'hape is gh, en by Fb_ _ where rb is the

tran,_ver_e body ordinate, 2 is tl, ._'treamwise didanee

fi'om the nose, and m is a constant in the range
2/(_+8)<m<1. Both zero-order (M-_) solu-

tions a_M fir,_t-order @mall but noneanLs'hil_g raIues

<![ 1�(Mr) 2) solutions are presented, tvhere M is the
free-xtream 3hteh _umber and 6 is a characteristic

body or streamli_w,s'tope. The zero-order,shock ,shape

Ro is similar to the body xhape.[or the,_e flow._. The

_olutions are found within the framework ,j

h yper,_onic-.dender-body th,_ory.
The, Iimithtg ease m=l eorrespmlds to a wedge

(or=0) or cone (z=l)fl, w. The limiting case

m--2/(_+ 3) corre._p(mds to a con.,:tant-el_erg!! flew

(Fb=0, Ro_22/(_+a)). The latter eases are ineluded

_o that the present study may be applied to all fl, ws

wherein the zero-order shoelc ,_'hape i,_ given by Ro
-x.... with m in the range 2/(a+3)<m<i. Flow

fiehIs associated with ,_hock shapes havb_g values qf m

outside this range are also discussed. For all values

qf m, except re=l, certain portions of the./l, w fiebl

violate the bypersonic-slel_der-body approximation_,

while other pnrth,ns are eonsi._tent with the,_e apprnx-

imatbms. For m 1, all portions _] the flon, fiehl
are eon,sistent with the appro,rimations.

The approximate solutbms are ,found as foIlow._.

The a,_'ympl(,tic form qf the flow in the vie_ity of the

body ,_u@tee is used as a guide to wrile apprnximatc

expressions ,for the depemle_t variable,_'. These

ezpressions exactly ,,'ati._fy the contbtulty and

energy equations a_d contain arbitrary cow,stands

which are e_'aluated so as t, sati,_:fy boundary condi-
tions at the shock. The approximate _dutions do

_ot _ati,_[g the lateral mome_dum eguati(m exeept at
the ,_,hoek and (for the fiv,q-order problem) at the body

_.u_faee.
The re,_ults _ the approximah_ solutions are

compared with _umerieal integrations qf the equa-

tions _ motion for various values of m and v (ratio

of ,_pee_fie heat,_'). Good agreement i._ noted, par-

t_eularly when m and v are both near one. Tile
shock i,s' relatively close to the body for the httter

ea,_.es. Sufieiet_t re,s'ult,q are pre,_ented to evaluate

the: accuracy of the approximate method for various

values (,fm a_d %

INTRODUCTION

The st eady-sta!e equalions of nmtion for h.yper-
sonic flow over slender bodies can be reduced to

siml)h,r form by incorporating {he "hypersonic-

slender-body approximations" (e.g., refs. 1 and 2).

Tile reduced equal ions are valid provided (32_<:1
and 1/][5_0(1), where 3I is lhe free-sh'eam Math

numl)er and 6 is a ehara('terislic body or slream-

line slop('. Reference 1 has shown that, if the
nondimensional s{reamwise coordinate is con-

sidered a_ a nondimensional lime, these reduced

equalions are identi(,al wilh lhe full (exacl) equa-
lions for a corresponding unsteady flow in one less

space variable. Forel)ody drag on a iaypersonie
shmde,' body is equiwdent to the net energy per-

turbalion (from lhe un(lislurl)ed slale) in the

corresponding unsleady flow.
References 3 and 4 have lreated the eonslant-

energy flow fichl l)ehin(t the spherical 'q)last"
wave which is generaled when at finite anmunt of

energy is reh'ased instanhmeously a{ a point. The

analysis assumes a very slrong wave and is valid

(for a perfecl gas) mat il the decay of shock strength

is sufficient to violate the strong shock assump-

tions. The problem of phmar and eylindrieal

blnst waves was h'ealed by a unified analysis in
1
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reference 5. In addition, the flow-fiehl modifiea-
lions associaled with more moderllte shook

slrenglhs were found by a perlurtmtion analysis

(refs. ,5 and 6). Tilt, solulion for the cylindrical

blast wave was obtained, independently, in refi,r-

once 7. Reference 8 has pointed out that, within

the framework of hypersonie-sh,.der-l)ody theory,

the hypersonic flow over a blunt-nosed flat plate

(or circular cylinder) may be considered as the

steady-stab, analog of the eonsia.t-energy planar
or cylindri<'al blast-wave problems, respectively.

The nose drag in the steady prol)lem is equivalenl

to the flnile energy whMl is instantaneously

released ill the blast-wave prol)h,nl. The steady
flow is not correct near the nose (where lhe

hypersonie-slen<h,r-body approximation _2((1 is

violatpd) and far downstream of the nose (where

the approxhnaiion 1/3/5_<0(I) is violated as is

the strong wave assumptions of blast-wave

theory), ttowever, useful results are obtained

for the intermediate regions (ref. S).
The blast-wave prol)lenis all exhibit flow

sinlilarity. Thai is, ill(, flow fields at different

limes are sinlilar, except for a scale flteior on

both the dependenl and hldependont _'ariables.
References 9 and 10 have observed tilat, such

similarity exists wllenevor lhe shock shape follows
a power law varialion (witll slreamwise distance)

provltted the hypersonic-slender-1)ody equations

are considered in the limit as ]/(:][g))2 >0. This

led to numerical solutions of the hypersonic flow
over slender blnnt-nosed bodies. The effect of

nonvanishing vlihies of 1/(3/-c$) 2 was also found in
reference 10 by a numerical perl urlmlion analysis.

In the present repori, approximate analytical
solutions are obtltined for both the zero-order

(1/(3/6fi+0) and first-order (sm'dl but nonvanish-

ing vahies of 1/(3//_) 2) hypersonic flmv over bhml-
nosed slender bodies. The zero-order solutions

represent generalizations of the approximate ana-

lyii('al sohllions of the blast-wave problenl which

are presented in references 3, 4, and 5. Tile
shoel( locations and pressure distrit)utions indi-

rated t)y the approximah, solutions are compared
with the vahies which result from a numerical

integration of the equations of niolion. Finally,
some general l)roperties of the hypersonic flow
fiel<ls associated with power law shock waves are
discussed.

ANALYSIS

Tile equations for hypersonic flow over slender
bodies ore summarized herein. These are Own

,q= ,q(_

'_"f I t ] ;57 ,<
//.i

M , E- d x,u

Ftc_,uaE l. Physical quantities for study of hypersonic
flow over bhml-nosed bodies. _'o=_'0(z--') is shock shape
in the limit as l/(J/_):_-+(}.

specialized to obtain the zero-order and first,-

order equations for hypersonic flow over [hose
slender bhlnt-nosed be<lies whose zero-order shock

shllpe follows a power law varialion. Finally,
approximate analytietiI solutions of these equa-
tions are obtained.

HYPERSONIC-SLENDER-BODY THEORY

The equations of inolion for }typersonic flow

over sh,nder bodies (e.g., ref. 2) are summarized

in tile present section.
Pllysical dependenl and independent variables

at'e barred hereill _, r, x, r, ele.). S)-nlbols are de-

fined in appendix A. Figure 1 shows some of

these quantities. Let 6 represent a characteristic

body or streamline slope and L represent a char-

aeterist ic st reamwise length. Two-dimensional and
axisymmetric flows are considered, with (7,7)

nnd (g,7) being the slreamwise and transverse

coordilmtes and velocities, respectively. To obtain

the hypersonic-sh, nder-l)ody equations (if motion,

tile following nolldimensional quanlilies are intro-

duced (following ref. 2):

- }_ (1)

The body shape and sho('k sit ape are dent>t ed by 70=

7_(7) lind R R(7), respectively, so thai

r_=L,,,'_a R sP,,_ (2)

If these quantities are introduced into the equa-

tions of motion and terms of order _2 are negh,eted

(compared with one), the hypersonic-slender-
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botly equations are obtained. These are (ref. 2):

Continuity :

bp bpc pv (3a)

r-- _ tom etlt Uln :

+;,
P \b.r brJ br (3b)

Energy"

b(P/P'Y) +v b(P/P'v) =0 (3c)
b* br

Ttw boundary conditions are:

At body surface:

dr_ (4a)

l_pslream of shock:

u: = c: = 0 (4h)

p= = 1T3 I26_ (4e)
p_ = 1 (4d)

Downstream side of shock:

0" f ,_F, (4e)
3'+1 d,r 1,. k /'\d,r : /jj

,,,r-{ Y"("': )1}P'=_l \_lJf',! 1-- 23"/ _ffgl_[_ (4f)

P_ T+ l /" +
litre <T--0,1 for two-dinaensional and axisymmelric

flows, respeclivcly. This syslem of equalions
can be solved independent of the x-mome,ttum

equation, and therefore the latter is negh,cted

het'ein. The syslem of equations is consiste,fl.

provided 1,.':lI_<0(1). INch' that the right sides
of eqs. (4c), (4(,), anti (4f) become infinite if 31<_

is permitled to go lo zero as <_agoes to zero.)

Thus, the conditions 1/315_<0(1) and 5_1

must be satisfied for the hypersonic-slender-body

equations to he wflid.

FLOW FIELDS HAVING ZERO-ORDER SHOCK SHAPES

FOLLO_'ING POWER LAW VARIATION

The equations for hypersonic flow over slender

bodies are specialized herein. The resulting
equalions give the zero-order anti fi|'sl-order

hypersonic flow over those bh|nt-nosed bodies

whose zero-order shock shal)e follows a power law

variation. These equations were previously de-
rived in refe|'ence 10.

Let Ig'_(7) denote the shock shape for a given

body in the limit as 1/(3I,_)2--+0 (i.e., zero-order
solution). References 9 and 10 have shown that

when 11-'o(7)+7" the flow fichls are similar at each

3

streamwise station (for l/(31<_)_-+0). In general,

the body shape is similar to the shock shape for

such flows, in which case F_(7)"--7 '_. Vahles of m

in the range 2/"(_+3)_m_1 correspond to bodies

having nn infinite positive slope at tile nose.
The limiting vah|e m = l corresponds lo flow over

a wedge Ice=O) or cone (_=1), whih' m=2/(_+3)

results in a body shape 7b(7)=0. The lalter flow

may he interpreted as that over a bhutt-nosed

flat plate (<*=0) or blunt-nosed eirel,lar eylin<h,r

(<r=l). (As in eels. 9 and 10, the m=2/(_+3)
case is referred to as the "constant-energy case.")

The present report is prin]aril 3 concerned with

wfluesof m in tile range 2/(<,+3) <m <1.' These

flows violate the hypersonie-sh,ndcr-body nssump-

lion a2_,_l at 7_-0 (except flu" re=l) so thal tile

resulting solutions are not expected to be valid in

this region.
For the remainder of this reporl _ is taken [o

be the streamwise hu|glh of a giw'n body and <_is
define<l to be

a-- IIAL)/L (5)

T]ien, the nondimensional zero-order shock shape

is given by
Ro= x" (6)

An alternale <.haraetcrislie slope based on body
i

tlfickness at E L is
i

__ 7o (L) = 6ro (1) --=6 _rbIx)_ (7)
L liD Ix)

These quantities are indicated in figure 1. For

prohh,ms whe|'e lhe body shape is initially speci-

fied, G is known immediately while 3 is fonnd as

consequence of the solution.

New indepe||dent variabh's art, now introduced

according to the relations

= x l (8)

,7= i./I_o= rp " J
so that

a, a_ _ (9)

Or b_

x Values of m outside this range give rise to flow fieMs, portions of which are

physically realistic and consistent with the assumi)tions of hypersonic-

slender-body theory. These flows are discnssed in the sectian entitled

GENERAL CItARACTERIgTICS OF FLOW FIELDS ASSOCIATED

WITH POWER LA_,V SHOCKg.
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At the zero-order shock location r/=l, and at the

body n is also constant and is denolod by n0.

Note also, _0=&/0. Following references 5, 6,
and 10, a small pert urbation parameter _ is intro-
duced"

_= (_'-","M_)' "__
(10)f

,t4<1,= 2 (1- m)_,!_j

Tile boundary conditions lit lhe shock suggest the

following forms for the dependent variables:

v= m _'-' (¢,o4-eso_) (1 la)

p m2(_(''-'_ (Fo+eG) (llb)

p = ¢o+ _7,_ (1 lc)

tg-- _'_(1+Ea_) (1 ld)

where ¢, /7, and _ are functions of n only and a_
is a constant, which is inilially unknown.

An alternate shook shape parameler _ can be

defined according to the relation

2

The range 21'(_+3) <m <1 then corresponds to

the range 1 >__¢3>__0. Nolo, ¢3 1 corresponds to the

eonslalfl-onergy case.

Substituliug these q!mntities into the equations

of molion and collecting terms of order _o and d

then define the zero-order and first-order approxi-

real h>ns, respeetiwqy, for tilt, hypersonic flow over
a power law body. The ehoice of lhe variables is

sueli ihal lhe zero-order and first-order equalions

are functions of n only. These restllts, wiiieh were

previously obtained in reference 10, are summa-
rized :is follows.

Zero-order approximation. Equations (3)yMd:
Con t inuit y:

(_0-- _/)¢; + ¢o_o+ ¢ ¢°_= 0 (laa)

T/-- .X[oment um :

, F_ _+1
(90-- r/)¢,0+ _--(_: ) _9o= 0 (13b)

Energy:

(_,0-,D \& _o/ 0+1)5=0 (lae)

where primes indicate differenlialion with respeet,

to n. The boundary conditions at 7#=1 are

9,o(1) = F0(1) -- 21(_q- 1) "_
(14)(

6.(1) = (3,+ 1)/(3,-- 1) .J

Equations (13) and (14) define the flow field eom-
pleloly. The body location is defined by the

tangeney eondition (eq. (4a)), which becomes

(sinee re-- at,Re)

_o(_o)=,7_ r,15)

Derivatives of lhe dependent vari'dfles, at 7/=1,

are Wen in appendix B (for later use).

First-order approximation.--Equations (3) yield,
respeetiwdy,

_;+ (_o-,7)_L4_(¢,;.C_
¢0-t,¢o-n/¢_

q-[(a+l)_ (¢0--n) ¢_c,J#°]@o_'=0 (1Oa)

, ,__FI__t / r__o--}-I )0-,,<_-_,, _-t,¢0.- _- __ ,01

F; _'=0 (10b)
¢,0_0

F_ . t'P; . a'g\ ( o) 17z_ 0"_d,+(_,0-e _+td<o+7) _,.+-r 4+z_ _0-

(1@)

The boundary conditions tit n----1 (see appendix

C) are

1--_,0(1)

f_'+l , o _-a,
-- L;r_ _oo(1)--_-i [1+ (o-+1)_3] J

bl_-- bl_al (17a)

+,_1)__-1-__-2(l+__ __e)_]¢o0) Ly-_

--[;@ll _b;(l)] a,

-- b2_-- b,e_al (17b)

(,+%1,Y]

-- {'r-_ 1-F_ (1)--2[1 + (,_+ 1)Bi } a,

=--ba_--ba_a,i (1 7o)
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The tangency condition at, the body has ah'eady

been satisfied (eq. (15)) so that the bmmdary

condition on _ at the body surface is

_,(_0)=0 (18)

For a given body, al must be determined such

that equations (16) and (17) yield a solution

satisfying equation (18). To avoid trial-,'md-error

choices for at in a numerical integration of equa-

tions (16) and (17), it is advisable to decompose

the dependent, variables and boundary conditions

into two paris, one independent of at and the

other proportiomtl to al. That is, each dependent

variable is expressed as

( )_=( ),.,4--( )t.aa, (19)

For example, {01=_oi,1-_01,2d¢l and so forth. Thc

solution fl)r ( )_._ and ( )1.., can be obtained

independent of a_, and lhe fired solution is given
by equation (19) with at round fi'om

a, -_,,,(,10)M,_(,_)

Such a procedure was used in references 6 and 10

and is permitted because of the linearity of

equations (16) and (17). This procedure was
also used herein to get additiomd numerical

integrations of equatians (16) and (17). When

getting approximate anal.ylicaI solutions of these

equations, it is possible Io satisfy equatiml (18)

without, resorting to equal.ion (19).

EXPRESSIONS FOR SURFACE PRESSURE, SHOCK SItAPE, AND

DRAG

Before continuing with the solulion of the zero-
order and first-order probh, ms, it. is useflll to

deveh)p expressions for sm'fiwe pressure, shock

slmpc, and (lmtg for these 0ows.

Within the framework of hypersonic-slender-

body lhcory, the locql pressure coelticicnt is given

by (fram eqs. (1))

g. p--p_ 1

The h)cal surface pressure coefficient for the zero-

and first-order problems is t.hen given by either of

lhc following expressions (f,.om eqs. (llb) and
(20)):

_p,b

(dT_/dY) 2 2£,(,7,,) { 1+ [-h (_)= ,7_ LF,,(V7

1
(21a)

ia:t_ _7,] 3

or

C_,,_ --2F0 (rb,3{ 1 -L F [' (rl_)(d20/dT)_ _ ' LT',,_

The equivalence of equutions (21a) and (21b) can

be seen by noting "_b=n_R0. Equation (21b) is

particularly usefifl for the /3= 1 (constant energy)

case since 7b--r/,,=0 lherein.

Tim zero-order and first-order shock shapes are

given t)y (from eq. (1 ld))

_ (.r--) 1 [1-_cq rT_ 7) ag'-m)

or

] 2(1- m)
R('-ld = (_2b)
//',,,(y)

Again, equalion (22b) is pa,'tieula_qy useful for
the 5--1 <'ase, as is discussed h_ter in this seelion.

Numerical values of ths quant.ities _, Fo(r_o),

F_(_lo), and a_, which appear in equal.ions (21) and

(22), are tabulated in l._fl)les [ to IV fro' various

values of a, y, and ft.

'Phe forcbody drag can 1)e found 1)3" integraling

the s,,.race pressures. If D(Y) is lhe fo,',,t)o,ly drag
Ul) lo stal,ion :_ and q---_/2, then the appropri-

ate integral is

D
- 2_°_'>_) G,,,(70 _ (17_ (2a)

Noting 7_-- _SU _, subsli{ u ring equation (2 [ a ) inl o

equati.on (23), and inlegrating yield for

m>2/(_-+a)

D(7) __=2Iq,(_,,) f F '<°+a_-_

2_r"maqa_(Y60) _+' v_ ], m (_+3)--2

4 m(,+l) LPo(n_) "rm'F0(,_0)J (lilac) _ (24)

The over-all forebody drag coefficient, referenced
to the eross-seclional area of lhe base, is llwn

D(Z) 2_+'m aa_,F0(_.)

+m (_+3)-2 rh(_,,) I -1
(_m7_ } (25)
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TABLE I,--APPROXIMATE SOLUTION OF ZERO-ORDER PROBLEM FOR ¢=0 AND COMPARISON WITH
RESULTS OF NUMERICAL INTEGRATION OF EQUATIONS OF MOTION

1.15

1.4

1.67

0

1

0

1

0

5 /
/8

?/

1

. 93
5.18
7.16
8. 52
6.16

• 465

0• 962
1. 240
1• 296
1• 167
.817

l .417

• 535
• 644
• 655
• 608
• 504
.375

Approximafe solution

Do Vb

1. 255 0.930
1.535 •891
1.800 • 852
2.13 .801
2. 68 . 710
3.80 •513
7. 67 0

1.556 0. 833

. 678 .760779 695
1:888 619
2.04 •499
2.30 .284
3.50 0

1. 788 0. 749
1. 788 .660
1.77O .586
1. 762 505
1.752 .385
1.738 .186
2.=t9 0

0,930
• 766
.672
.598
• 520
,442
,412

0. 833
• 679
• 584
•504
• 415
.320
• 316

IO. 7,t9
.605
• 512
.432
,340
239

250 [

Numerical

inlegration

t
Fo(,_)

0.930 I 0.930

.891 .761

• 852 i .675
.803 .611
• 716 .546
,535 i .481

0 •.115

0•833 ' 0.833
• 759 .666
• 695 _ .581
.623 I .518
.513 •454
• 333 .390

0 i .325

0. 749 0. 749
• 658 .5_7
.585 i •507
• 509 ] . ,146
.404 •386
• 248 .326

0 . 26-t

TABLE II. APPROXIMATE SOLUTION OF ZERO-ORDER PROBLEM FOR _ 1 AND COMPARISON WITII
RESULTS OF NUMERICAL INTEGRATIONS OF REFERENCE 10

Approximate solution Numerical integra-
tion (rcf. 10)

1.4

I 1.67

0

0
31

/'8

1

0

1

co Do ,b Fu(_) ,b Fo60

-- 2. 53
F1. 636

3.64
5. 53
7.11
5.68

. 465

-- 1. 019
+. 383

• 757
• 930
• 949
• 757

_ .417

. 170
• 365
• 452
• ,t83
.459
• 375

2.05
1.317
1. 642
1.981
2.53
3. 62
7.13

2,11
1. 228
1. 485
1. 631
1. 798
2. 03
2.92

2.16
1.161
1.405
1.450
1.457
1.436
1.867

0. 965
• 945
• 924
• 897
• 846
• 724

0

0. 915
• 875
• 839
• 795
.719
.561

0

O. 870
• 819
• 776
• 726
•644
.480

0

0. 947
774
682
608
531
453
410

O. 872
704
611
529
438
337
302

0. 805
645
554
469
370
257
255

0,965 0. 948
.945 .775
• 924 . 688

". 898 _.621
.845 •553

_.735 ".484
O .411

0.915
• 875
•839

_. 796
• 725

". 589
0

O. 870
• 819
.776

-. 727
• 652

". 518
0

0. 875
• 696
• 607

". 538
• 467

". 392
.3tl

0.811
• 634
• 544

_. 474
.403

",326
.241

Numerical integrations for _ = _{, z/_ were not given in ref. l0 and were found as part of the present st udy.
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TABLE III.--APPROXIMATE SOLUTION OF FIRST-ORDER PI_OBLEM FOR a=0 AND COMPARISON

WITH RESULTS OF NUMERICAL INTEGRATION

w

1.4

w

l. 67

0

I./

1

0

1

0

1

A1)proximate solution Numerical

integration

.'11 B_ Cl a l F_ (rib) al Fl (,Tb)

1. 935
4. 17
6.91
9. 20

11.76
15.11
14. 82

1. 857
3. 06
4. 24
5.14
5. 98
6. 82
6.01

1. 799
2. 27
2. 95
3. 43
3. 85
4. 22
3. 96

0
-.0516

+.0550
• 226
.385

-. 0457
+ 6. 85

0
-.1035
-.1135
-.1110
-.1430
-.386

2.94

0
--.1000
--.1237
--.1323
--.1644
--.309

+1. 813

-13.33
- 27. 6
--35.4
- 41.8
--48.3
- 54.3
- 60.3

- 5.00
-- i1. 28
-- 14.15

-- 16.18
-- 18, 2l
-- 20. 0
--22, 7

-- 2.99
-- 6.99

-- 8. 55
-- 9. 70

-- 10. 83
-- I1. 90
-- 13. 22

1. 000
1.342
1.453
1.474
1.415

1. 194
•963

1.000
1. 213
1. 230
1.192
1.113

• 975
. 992

1. 000
1.140
1.130
1. 092
1. 035

•956
• 940

1. 800
2. 78
3.03
2.95
2.57

1. 999
• 923

1.548
2.18
2. 22
2.06
1. 764
1.397

• 78l

1.348
1. 778
1. 750
1. 599
1.367
1.092

.700

1.000
1.34
1.43

1.31

1.03

1.000
1. 21
1, 21

I. 07

-.b_

1. 800
2. 79
3. 16

2.77

-.-6i6

1.548
2.17
2. 25

1.78

1.000 1.348
1.14 1.77
1, 11 1.78

TABLE IV.--APPROXIMATE SOLUTION OF FIRST-ORDER PROBLEM FO]-L a=l AND COMPARISON

1.15 0

!4

1

1.4 0

74
%

1

t o

1__

I. 163
4.03
7. 33

10.78
14.53
17. O0
17.25

1.027
2.74
4.57
6. 21
7.77

8. 73
7.67

0. 968
1. 996
3. 19
4. 21
5.18
5.83
5. 10

WITH RESULTS OF NUMERICAL INTEGRATION

Approximate solution

B_ C1

0. 00819 --13.16
• 229 -- 34.1
.696 -- 48. 7

1. 545 -- 6t. 7
3. 25 -- 76. 4
6. 61 -- 93. 2
3. 50 -- 77. 5

0. 00909 -- 4. 83
.1231 --13.39
.315 --]8.83
• 676 --23.4

1.39I --28.5
2. 8l --34.2
1.372 --28.3

O. 01858 --2. 84
.0966 -- 8.11
.225 --11.26
.472 --13.87
.952 --16.69

1. 906 -- 19. 85
1.056 --17.16

aI
0.489

• 883
I. 083
1.204
1. 288 !

1.377 [
1.449

0. 477
.802
.93I
.99i

1.027
1. 075
1. 231

0.467
• 754
• 856
• 903
.933
.974

1.118

FI (vb)

1,10
2.55
3.28
3.52
3. 21
2.26
I. 064

0.899
2.03
2.50
2.59
2.36
1.796
• 954

0. 785
1. 692
2. 03
2.09
1. 919
1.606
. 823

Numerical inlegrat ion

Present results Ref. 10

0.489 1.10
• 885 2.50

1.08 3.37
1.17 3.84
1,18 3. 79
1.10 2. 93
1. 23 1.32

0.476 0. 918
807 1. 97
932 2.49

976 2. 67
976 2. 51

964 1.95
992 1.14

0.465 0.783
762 1. 63
863 2.00
900 2.11
911 1.98
922 1.57
969 .931

a_ F, (n_,)

0. 45;5 1. 10
. 829 2. 43
• 982 3. 05

1. 15 3.53

I. 07 1.35

O. 396 O. 92
• 677 1.93
• 793 2. 38

-._6 _.-:_,

-?6_ i.-6_

0. 350 0. 78
• 575 1. 61
• 663 1. 93

-;_ 1.76

-;_5_, --66

For 3,=1.405, B=O, a=l, the results of ref. 2 indicate a_=0.47 artd F_ (,_) =0.91 (found from cone results for 5I,_b= ,_, 3.988 therein).
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:For the constant-energy case, _3=1 or m=

2/(a+3), the integration of equation (23) is invalid.

However, the drag for the latter ease call be ex-

pressed in terms of a momentum contour integra-
tion. A momentum contour integration indicates

that the foret)ody drag up to any station Y equals

the net energy perturbation of the transverse flow

(per unit _) at. that station (e.g., ref. 10). The

energy perturbation is taken to be the departure
from the fi.ee-stream vahle. Thus, if E is the

energy perturbation per unit mass at. any point,

_E-c_(T T_)+_- 1 \o p._/
(2G)

then

D(¥)=27r _ _._(1) pE_--_"d7 (27)
JL(7:)

(28)

where

,ym 2

+ 1 [-F-¢°+ 7-1 (6'+2_°t3"]_

Noting 7=_T_=_, (17= 6_(" d_ and integrating be-

tween the limits n0 to l+_a_ yMd

D(7) _-.,(_+s)-2 fit / F0 __1 o., "_

(m(_+l) I 4al 1

+/.[[P'+V  o/j (20)

wherein use was made of the relation 2 r|t ¢0n* dn=
,d %

1/(cr+l). Equation (29) is applicable for all m
and is thus more general than equation (24).

Consider the zero-order drag approximation

(first term on right side of eq. (29)). It is seen

that the dependence on _ disappears for m=

2/(_+3) so that the drag D(7) and, therefore, the
transverse energy jump discontinuously at. 2=0

and are constant for 7>0; hence, the origin of tile

term constant-energy case for this value of m.

If the first-order approximation is to be included,

equation (29) shows that in order to have a con-

By employing the zero-order stream funethm (see next section), ¢_0=

'') ;Ib¢o,.d,=rl--Oo(,_)]/(a+l ).Oo/(a+l._*. so that For body shapes de-

fined by 0_(,/_)=0. the integral becomes l/(,+l).

stant-energy flow the value of at must be such as to
make tile coefficient of _"_+_)identically zero

in equation (29). Such constant-energy flows
can be used to estimate the shock shape and

pressure distribution on blunt-nosed flat l)lates or

circular cylinders (see following sketches). Tile

correspondence t)etween these two flows (sketches
(a) and (h)) breaks down at _'=0 because of the

finite thickness of the plate or cylinder. How-

ever, hypersonic-slender-body theory (which is

the starting point of the present analysis) is

inapplicable near Y=0 anyhow. These two flows

are expected to be in essential agreement in the

intermediate regime wherein the values of Y arc
neither too small nor too large to invalidate

hypersonic-slelider-body theory.

r :R(x)

(a) Constant-energy flow. Drag impulse at 7=0.

?-

._-- 7: _7(;)

/
_fb = coflsl.

(b) Flow over blunt-nosed plate or circular cylinder. Drag

impulse at N = 0.

If tile nose drag (i.e., drag impulse at Y=0) is

known in a eonstant-ener_" problem, it is possible

to express t.be shock shapeand pressure distribution
as a function of this known nose drag. The
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procedure is as follows. For a constant-ener_"

flow, equation (29)becomes

DN

--_£ 1/ F° 1¢_o) =I_._+_ n_d_
(30)

where D,v is tlle known nose drag and the substitu-

t ionsZ=_ and _=R-0(_)/7 have been made (since

the equation is independent of the choice for L---).

Let CD, be the nose drag coefficient:

Dx

CD_.--2,_,rr_q_,v)_+l (31)

where 7_, is the half thickness or radius of the flat

plate or circular cylinder, respectively. The shock

shape can then be expressed as (from eq. (22t)))

- { E'*r"?}R(_)T_o(7)Fx r_- 1+a, f[ F.-vh;_-7)d (32a)

where (from the ratio of eqs. (30) and (31))

1 2

(_ 3 _ ;Ti .,
"Rot-x) 1 r + ) C"vl (7_ "_TVi

=2L I -]
(32b (

Equations (321) give the sho('k shape R(_)/F_v rs a

function of _ with CDN, I, and ax as parameters.

For a given nose configuration, CDN can be esti-

mated by using methods described in reference 11
and in the references noted therein. Numerical

values of I (defined by eq. (30)), obt'fined from

aa integration of the zero-order equations, are
listed in table V(a) for various "/ and _. These

are in good agreement with values reported in

reference 5 (table V(b)). The results are expressed

as (¢-kl)(y=--l)I since this is a slowly varying

function of 7 and ¢. Values of a_ are listed in
tat)les III and IV for a=0,1 and ,),--1.15, 1.4, and

1.67.

The corresponding expression for surface pres-
sure coefficient, for the eonstqnt-energy case is

(from eq. (21b))

Cp,_ =2F0 (0) (" VF, (0)
I+LF- 5

43,Fo(())J 5IZ'07(2) 77v (33)

where Ro(_)_,v is given by equation (32t)).

FORMULATION OF ZERO-ORDER PROBLEM IN TERMS OF
STREAM FUNCTION

The zero-order and first-order problems could

have been formulated in terms of a single depend-

ent vari'fl)le, the slream function, instead of the

three del)endent varial)h's p, p, and v. Such a
formuhttion is convenient, for obtaining asymp-

totic solutions for the flow in the vicinity of the

body. These asymptotic solutions are useftfl when

numerically integrating the equations of motion

and when approximate analytical solutions are de-

veloped. IIeuce, the zero-order problem is formu-
lated in terms of a stream function herein, and

assqnptotic solutions arc obtained for 77near w.

The eontinuily equation (3a) is satisfied by a
stream function _ defined such that,

1 b_b b4/b.c

P---- r_ 5r v= -- b_/b_ (34)

The energy equation (eq. (3e)) shows that p/p'r is
constant along a streamline (except for the dis-

I r'gv0+ 1 )TABLE V.--qi;VAI,UATION OF =-do \_---l 2 _°2¢'° _" (t'q AND COMPARISON WITII REFERENCE 5

(_I_ (3"o) ,a. _)

[Tabulation ls in terms of (a-}-l) (-/_- 1)1.]

(a) Present results, based on numeric'd integration of
zero-order equations

1. 15
1.4
1.67

(¢+ 1) (v2-1)I

¢--0 _ 1

1. 088 1. 098
1. 164 1. 203
1. 2O6 1. 278

(b) Values based on Table III of reference 5

1.2
1.3
1.4
1. 667

¢=0

1. 109
1. 140
1. 163
1. 213

(a+l) (v:-- 1)I

¢=1 a=2

(Taylor)

1. 134 1. 134
1. 170 1. 202
1. 203 1. 226
1. 249 1. 293
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continuity at the shock). By considering flow downstream of tlie shock, a function o: (of _) can
be defined according to the relation w(_) --p/K _ so that

p=o:p_ (35)

For prescribed shock shapes, tile functional dependence of _o on _ can be determined explicitly by

considering conditions at the shock. Substitution of the previous equations into the momentum equa-
tion reduces the problem to that of determining the single dependent variable _.

In the present section, only the zero-order problem is considered. An appropriate form for _0 is
A

_bo= [1/(a+ 1)]_'_+_)0o (36)

where 00----0o(,7) and Oo(l)----1. At _=l, the boundary conditions on Po and po give

2 y-- 1 'm2 _(=-,

Bu L also at n=l,

o-+ 1 (37b)

Eliminating _ between equations (37a) and (37b) and substituting for _0 according to equation (36)
show that

2,,,,_(3"-1y [p_°+'oo]-_
_°=ggi \U#i/ (3s)

Therefore, po, vo, and Po can be expressed as functions of _ and 0o (from eqs. (34), (35), (36), and (38)).
Substitution into the momeiltum equation (eq. (3b)) yields

" 23"(')'--1) L2-V* - ,o,,i
(3"+ 1) "r+' (a-t- I) "_ ,_+,",-,)e_+e F (0"+ 1,)e°7 (39)

with the boundary conditions As Oo >Oo(n_) 0 (i.e., n-->n_), the last term in

OoO)= t

0'o(1)-(_+ 1)(y+l)
3'--1

On the body, 0o(n_)=0.

The dependent variables of the previous section
are related to Oat)y the relations

00
_----,7-- (a+l) _ (40a)

_bo a+l 7/_ (40b)

Fo= 2 1 ( 1 3"--1_'] "_ (40c)3"+_bg _Y3"+1 ,re

Also,
i!

l-,_=0_ 0o (4od)
V--_o Oo Oo

(40e)_,o Oo ,7
_v i,, ¢

?___0__0o_ 0o 3"0" (40f)
Fo _ O_ 30o n

the numerator and denominator of the right side

of equation (39) can be neglected (at least for
13< 1)? Equation (39) can then be written

e0' _a0 a
=o (400_ 3"0o n

Integrating gives

00_ Tx"o(r/"+' -- _Tg+1) '/('-O) (42)

where Ito is a constanl. Substitution of equalion

(42) into equalion (39) verifies the neglect of the
last terms in the numerator and denominator for

near n0. An improved asymptotic solulion can

be obtained by substituting equation (42) into

these terms. This gives for /3_1 and /3=1,

respectively (recalling no--0 for t3= 1),

o'o' eo_ a r(a+l)/3_5,,_-_7
0; 700 .=L_J

X rl_(_?'+'-- _g+') a/(v-a) /3-_/1

= fZCo[3"(a+3)-2] } _-,"_ 2")'_(3"--1) F0(0) .. r/ /3----1

The limit ,O_<'l is associated with the a=l case (see discussion in seclion

entitled GENERAL CIIARACTERISTICS OF FLOW FIELDS AS-

SOCIATED WITIt POWER LAW SIIOCKS).

:1
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Integrating the expression for fl<l and then

substituting into equations (40a), (40b), and

(40e) give, for/_<1,

&_,_,Oo_Ko[,ff+t--,Tg+'] w(v-_) lq 2(2_--_)Fo(,Tb) K°('f+L

--,7_+') w<_-m] (43a)

Integration then gives

O0_ K0(,/¢+'- ,/_+')[1

¢ K 2(__+1 ._+,_7
-- 2¢6V(a+l)K0nb Fo(,/b) o,q --"_ J A

(43i)

¢+_-'7_+' [, +3(_+ _ o_]

v-_ ,r+,-,g+'[ &_-_ ]-'2(2T--fl)F0(,_)

(43b)

,_o-_ L- -- (-2_--_) Fo (n b)

(43c)

FO'_FO(n_)EI+_t-_--2Fo(v_)0o] (43d)

Terms of order 0_ are neglected in the brackets

of the previous equations. Integrating the expres-
sion for fl= 1 and then substitutii_g into equations

(40a), (40b), and (40c) give, for fl=l,

I 2,+_-,-]
('+'_A)_ (_+l)Ko,/ v-1 [ (43e)

0o=K0,7 _-' 1-42_(2x+o--1)Fo(0)J

_o-n_ • n 1 2T2Fo(0)n'-_Oo (43f)

_,+1

¢'0_Z-i: ,1 1-4 2T2(2v+¢_1)F0(0) n'-_0o

N3g)

Fo_Fo(O) [lq 3_,÷_ry--2 _'-_00] (43h)

Terms of order (n'-_0o) 2 are neglected. Note, from
equations (40e) and (42), that Ko is related to

F0(w) by

For /_=0 the correction terms vanish in equa-

tions (43a) to (43d). A higher order approxima-

tion can be obtained, for/_--0, by writing equation

(39) as

d

(43j)

(43k)

7- 2o-Fo.-_Fo(n_) 1 2(o+l)Ko_Fo(n_) O_ (43/)

Terms of order 0_ are neglected.

These asymptotic solutions (eqs. (43)) are useful
in numerically inlegrating equation (39) (or eqs.

(13)). The boundary conditions at ,7=1 permit.

one to integrate from n=l toward n=n_. IIow-

ever, equation (39) is singular at rib, anti the

numerical process breaks down. But, the asymp-
totic solutions can t)e used to carry the so|ution

to _. For examph,, if _,0 is eliminated between

equations (40a) and (43b), the resulting equation

can be solved for n_. The result, to the present

order, is

,_/{1 "y(_+1)3,___3_/0'o0°[lq 2(2_----_FolJfl_'-_0°-]l '/(_+',

Similarly, equations (43d) and (43|0 give

Fo(,_,) =Fo (1 _ n'-_0o'_2 _ } _<1

_Fo [i 3y_-¢'y--2 - _=i

The asymptotic solutionsare also usefulas guides

for settingup approximate analyticalsolutionsof

the zero-order equations. This is done in the
next section.

APPROXIMATE ANALYTICAL SOLUTION FOR ZERO-ORDER
PROBLEM

An approximate analytical solution for the zero-

order problem can be obtained in the following

manner. Equations (43b), (43f), and (43j) sug-

gest that _0 may be approximated by the expres-
sion

(____) 1 (,q_+, _+,) [1__ Co(_+ ,

-- 7/_A-1)D°] (44a)
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where Co and Do (as well as %) are as ycl unknown

constants. Differentiation of equation (44a)
shows

_po____= (o.@ l),-- o.g_o L_F/3-I-T--/_- two (D° @ 1) (r]'+l-- r/_+') D°]

(44b)

,, ('_4-,,o'_ 3,-_ (_+1)%(Do_'o+_\ q /--_-

+l)Don_(n_+i--n_+')Do-I (44c)

Sul)siituling equalions (44n) and (441)) into the

conlimfity equation (eq. (13a)) permits the latter

equation to be integrated. The result is

_,, _[1- Co(1-.g+,)"q'+(,& D0
_o(1) _a

(1 -,g+'),-_

X (_q I- 1-- _" 'b 1) 7--'8 (45)

1 g' ( _+I o'+F_DoI la' (_--/_)D_--' 0\7"_ --_b ) J

Similarly, integration of the energy equation (eq.
(13(')) yields

ro F °°l
;,o(_) Li-co(,,o+-,- ._+,)°o.1 (46)

The constants Cu, Do, and n0 will be determined

so as to satisfy the boundary conditions on _o(1),

_,o(1), mad _o'(1) as given by equations (14), (BI),

and (B4). The resulting solulion for _o, /7o, and
_bo will have lhe correct vnlues of lhese func-

lions and tlwi,' firs/ and second derivatives at

77=1 and will satisfy the auxiliary condition

_o(n0) =%. In addition, the continuity and energy

equations are idcniieMly satisfied, but Ihe momen-

t:urn equalion is not (excel)! at n= I).
Note that the expression for 0o associnted with

equation (44a) is (from eq. (40a))

(48)

7

=[1- CoO -- _+1) DO] (3--I_)D_

3,

(1--_+L)y-a

X ('7_+_-n;+')'-_
7

[z- c'o(n_+'-nW) D`,](,-_)_°

Any form for _,o--r/ which pernfits equation (47)
to be integrated in closed form will permit equa-

tions (13a) and (13e) to be integrated in closed
form. Similarly, equations (45) and (46) could

have been deduced from equations (40b), (40e),
and (48).

The constants Co, Do, and n0 will now be evalu-

ated. The cases /_/_1 and f_=l are treated

separately.

0ase _ 1.--Define the following known qunn-
lities:

__/-- 1 .,,, (49a)/'o=_ :___

1 _; [ , 2o- (_I)B] (49b)

_ 1 3' V ,, , 2o

where _o(1) and so'0'(1) can be found from equalions
(B1) and (B4). Equalions (44), evaluated at

= l, become

Po= l--n; +_- Co0--n;+_) D°+_ (50a)

Q,,= (DoT 1) C0(1--rg+a) _ (50b)

S0=D0 /)o+ 1) ('o(1-- rig+') _o-' (50e)

Solving for Do, Co, and no yields

Do-= _- (P@_° -[- Qo- 1)

(51_)

Co= Qo ( &'_ oo
Do+_ \D_/ (51b)

_0=(1 -D°Q'?_ '/(*+" (51e)\ so//

The pressure distribution is found from

_/(Do+I)

Fo(%)=__1(1D°+I )Qo DO (51d)
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The constants Pc, Qo, and So have tile following
vahies when a=0,1. For ¢=0:

_'--1 5'
P0 ,),+ 1 ")'--_ (52a)

2v--I ft (52b)
Qo= v+l ")'--t_

So _' ¢_ E 13_'--11 ]_,2-1 v-_ (7v-5)- 2 _ (52c)

For a= 1 :

3'--1 3'
Pc (53a)

v+ 1 v--fl

2_' 1 1 E 3'(3'--1) -]Q0 "Y-l-1 v--fl /3 (2-_-1)_-+1)_ ] (53b)

")' 1 E_ (13.r_ 11)_ _S°=2(7_-- 1) 7--f_

+ 2(9v_+v-6) Iv-- l) (5v2+ 10v+l)"] (53c)
_+1 _ Iv+l)2 2

Case fl=l. -For/3=1 it is known lhat ,0=0so

that an approximale solution is (from eqs. (50a)

and (50b))

no= 0 G = 1--Pc Do= (Q,>/G)- 1 (54)

This solulion does not salisfy t,he boundary con-

diiion on ¢_'(1). It gives more accurate results

than do equations (49) to (51) evahlated for

f_--l.

Equations (54) correspond to the approximate

analytical sohltions of tlle zero-order blast-wave

prol)leuI whMl are presented in references 3, 4,

alld 5. Equations (44) to (53) may be viewed

as a generalization of the latter for j_l. An
exact closed-form sohltion for the fl=l case is

presented in reference 10 (for c_--0,1,2) and in
reference 12 (for (r=2).

Numerical results for ¢=0,1 and various values
of fl and "y are listed in tables I and II.

APPROXIMATE ANALYTICAL SOLUTION FOR FIRST-ORDER

PROBLEM

Ttw quantities _l/(n--_O0), _/1/¢0, and FdFo will

be considered as the dependt, nt variables (siinilar

to ref. 6). By using equations (40), the first-order

equations (eqs. (16)) can lhen be written, re-

spectively : 4

Continuity:

( _, ")' ¢, ' 0,', _,

Momeni,um:

--(¢+1) (G'_2( ¢' "_'--i-F°n"I"F"_'
t0o] \_-_i - 0-_-t_;]

q-_ Efl(_? 1) 1--2¢q-2 (¢-I-1)(O{_)O°O;'q(2J _ m+l >_;

(55a)

Jl F0'¢ {F1 @1_--0 (55b)o'o- \Fo--_/-

Energ T :

_i ' FI' 0o
,7-_0 _]=o

(55c)

First, equations (55a) and (55c) will each be into-

graled as far as possible.
Equations (55a) and (55c) can be writlen, re-

spectively:

_o/-o_ +_ _i

Fo) O[J _+ _)/ n--,,ol

Integ'rai ion yields

(oo+, ")'d,-l-eonst. 1_o- <'Ldo_'=_ n-_o/

Ld0J-0+a'/,\ n-_o/ J

Inte_'ating by parts and introducing the constants
E_ and G_ give tile alternate expressions

f d0oq Ed_ (56a)¢1= _,, F(l+_)o_ ° o_,_-+o_'
1

¢o _--_0 d o

_-- f _+ et (loo+Go_o
Fo ,_-eo (sOb)

The operation [T(1+8)--8] (eq. (55a)) --(1+_) (eq. (55e)) leads to the

special iniegral

. ++,0_
where tile eonsiant call be evaluated in lens of the boundary eondltlol_s at

till.
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Substitution of equations (56) into equation (55b)
reduces the problem to tile single dependent vari-
able _l/(n--_0). This is essentially what is done
in appendix D to obtain the asymptotic form of
the first-order solution near 00_0. Since equa-
l.ions (55) are equivalent to a linear third-order
equation, three independent asymptotic solutions
are obtained. When numerically integrating
equations (16) (by the superposition procedure
outlined in connection with eq. (19)), the asymp-
totic solutions are required in order to proceed to
rib from a point near n0 (since the equations are
singular at no).

An approximate solution of the first-order equa-
tions (eqs. (16) lo (18))will be oblained herein
by using the asymptotic solutions of appendix D
and evaluating the arbitrary constants therein so
as to give consistent values for the dependent vari-
ables and their first derivatives at: n--1. The
asymptotic solutions which do not satisfy _,1(_)
=0 are neglected (in order to satisfyeq. (18)). The
resulting solution will exactly satisfy the continuity
and energ'3" equations but does not satisfy the mo-
mentum equation except at ,1=1 and n--_b. The
cases O<f_<l, 3=0, and t8--1 are treated sepa-
rately. In each case the problem is reduced to
a form requiring the simultaneous solution of four
linear algebraic equations in four unknowns.

Case 0 <_< 1.--Let Lt,l = --3A1, _l[i ,1
B(l--f/)gAl, E_,2-=Q, and _[l,_=--hQ in appendix
D. Equations (D4a) plus (D4b) can then be
writ ten

-¢' =A, [- _ + _ (1 -- B)gO0]+ C, ho_+. + (2-- _) Be0_
7/--¢o

(57a)

_o----A_(1+2/3(/0o) -]-GOB[1+ (2+ O)hOu]+3BtO_ (57b)

where

--1 .1,[_._ --(')'--/3--1)V_ -_
g-- 1--3 L,., = 2(27--f_)Fo(n0)

= E_-_,:=2 (1+t_) (2v+ _,,- f_)F0(n0)

The term involving B_O_ was added to equation
(57a) so as to permit, satisfying an additional
boundary condition at n= I. The corresponding
terms in equations (57b) and (57c) were found
from equations (56) with E_=6_=0. Four un-
determined constants, lit, B_, C_, and a_, remain.
These are evaluated so as to give consistent values
for the dependent variables and their first, deriva-
tives at n-=--1.

At n=l, 00(1)=1 and equations (57) give
(recalling eqs. (17) and (B5))

b_--b_4a_ = [--fl+_(1 --/_)g].,l_ + (2--_)B_ +hC_
(58a)

bz_-- b2_a_= (1 + 2flg)A,+ 3B, + [1+ (2 +3) h]C,
(58b)

bs_--bs4a_= [(7--fl) + (27--fl)flg]A_

+ (37--fl)B_ + (2_,+73-- 3)hC_ (58c)

(58d)

Define the coefficients of Aa, B_, and C_ by

bit _-/3[(1 --3)g-- 1] b_-2--3 bl3_-h

bz_- 1+ 2_g b22= 3 b2s_ 1+ (2 +3)h

b_,-- (_-t_)+ (2v-3)3e b_ - 3"_-- 3 bss-= (27+ _'3--3)h

b**=-3(1--3)g b_2-2(2--_) b,_-- (1 -}-_)h
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Equations (58a) to (58(1) can then be written,

respectively :

bllAl ÷ br2Bl -F blaC, ÷ bl4al = b151
i

b21A_-i-b22Bl-kb2aCl q-b:4al b_5_ (59)

which are four simultaneous equations for the four
unknowns =tl, B1, C1, and al. A knowledge of these

four quantities, together with equations (57), com-

pletdy defines tile first-order flow field. Numeri-

cal results for _=0,1 and various values of ¢_and

,), are listed in tables III and IV.

2]//'1 l

Case/3=0.--Let E,.I_C,, G.,2=-A1, and g------_

311,: •
=-- G_.= m appendi:_ D. Equations (D5a) and

(D5b) become

_1 ..-,/1,3 02"_ 3. 2 4- a -

g o)-2 (60)

_oo-----? C'gO_°+Al ( 1-? gO'_)+? l?qO]]

where

bn=--g b12=1 bla----g

b 4 1 3
b21=--3 g 2_=-_ b2a= +2 g

bal=l--?g ba2=? baa =-_-3"/g

b41=--2g b_2=3 b4a=2g

(62)

When these quantities are used in equations (59),

the unknowns A_, BI, C1, and al can be found, thus

defining the flint-order flow.

For a=O, it. can be shown t.hat A_=(3y+l)/2"/,

B_=0, C_=--2/(v--1), and a,=l. Also, F_(nb)=

(3"),+l)/[-/('y+l)]. These results arc in exact

agreement with those from an expansion (in terms

of 1/(M6) _) of the oblique-shock relations for flow

over a wedge.
Numeri(,al results are tabulated in tables III

and IV.

Case 3=l.--Let LI,I=----A b F_l,_=-C_, g-

--M_,_/L_ a, and h =- 5II._/E_ ._in appendix D. Equa-
tions (D6a) and (D6b) then suggest

_o, --A,[--I+ . e+* e+2(P--1)gOolq-ClhOo q-B, Oo
rl-- _po

=A,[1 q- [1-- al (P+ 1) gO_]

+ Goo (1 ' P+2"°vX-l'+3

--o'(3'-- 1)21/v

g-- 3"y(a-l- 1),/_[('y + 1) F0 (,/_)] (*+')/"

The terms involving B_e_ were added so as to

permit satisfying an additional boundary condition

at n=l. At n=l, equations (60) give (using

eqs. (17) and (B5))

b_a-- bi4at=--gA_ + B, + gC_

3 3 ,
b_--b,,_a_=--_ gA_-k-3 Bl q- (l +_ g)( ,

ba_--ba4a,=(1--_ g)A, A-3_ B,q-? .qtql

b_--b 44a_-------2gAl + 3Bl + 2gCt

(61)

Define the coefficients of A. B_, and C1 by

=A, + [-_(P+ 1) --1IgOr}

(yP+ 23,-- 1) h GO_+ I _l_vP+3y-- 1
-} P -- P-}-I BIO'_+_

(63)
where

p_2y-}-o'-- I
"r(aq- 1)

('_- I) (a-- 1)

(4y2__ 13_,__ a,y_F 8) K,) _(a+i)

2-r'(,, + t)P[v(P +U-11Fo(O)

(7-1)(a- 1)

(3"r + o"_-- 2)PKo "_(_+_)
h=--2y_(a+ l)(P + l) (yP +2y--I )Fo(O)

503S91--59---a
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The terms involving B_O_+2 were" inserted to permit satisfying an additional boundary condition.

The solution then proceeds as in the previous cases and results in four simultaneous equations for

the four unknowns At, BI, C_, and a_. Equations (59) apply with tile coefficients of At, B_, and

C_ )_eing given by

bn= (P--1)g--1 b12=h

b2_=l+[1--al(P-_l)g b_._=l+[(P+2)h/P]

ba,-----.y--l +['y(P+ l)--l]g ba2=[('yP+23"--l)h]/P

b4,= (P-- 1) Pg b,2---- (Pq- 1)h
(64)

bla=l

b2a= (Pq-3)/(PA- 1)

baa_--('rP + 33"--l )/(P +1)

b4a--P+2

Equations (59) can be solved for A_, B1, C1, and
at. Numerical results are given in tables III

and IV.

NUMERICAL RESULTS AND DISCUSSION

The zero-order and first-order problems werc

solved both by numerical integrations of the

equations of motion and by the approximate
method. The reslflts are tabulated in tables I

to IV for _=0,1 and various values of _ and 3'.

The results of the numerical integrations of refer-
ence 10 are included in tables II and IV. The

quantities F_)(*/b), Ft(71o), w, and al are used in

equations (21), (22), (32), and (33) to find pressure
distributions and shock shapes for the class of

bodies considered in the present report..

With regard to the zero-order problem, tables I
and II show that the approximate method is in

good agreement with the numeriea.1 integrations

for _ near zero. As fl approaches one, the ap-

proximate method becomes less accurate. At

fl= 1, however, ttle approxinmte solution is again
accurate since the appropriate wflue nb--0 is auto-

matically imposed and there are only two fi'ee

constants, as opposed to the three free con-
stants in the fl_ 1 eases. In general, the appro.'vi-
mate method is accurate when the shock is rda-

tively close to the body (i.e., v_ is near one)

so that, for a given fl, the approximate solution
is most. accurate for wdues of 3" near one. The

estimates for ,Tb tend to be more accurate than

those for F0(_b). The variation with 7/ of the

dependent variables is plotted in figure 2 for

• = 1, 7= 1.4. Figure 2 is based on the approxi-
mate zero-order results. Corresponding figures,

from an exact integration of the zero-order equa-

tions, are presented in reference 10.

Tim accuracy of the approximate solution of

the first-order equations can be deduced from

tables III and IV. Again, the approximate solu-
tion tends to bc more accurate for _ near zero and

for 7 near one. The accuracy of the first-order

approximate sohttion is less critical than that for

the zero-order flow since the former is a perturba-

tion quantity. Thus, if the first-order solution

represents a 10-percent correction to the zero-order

flow, and, if the approximate first-or(ler solution

is 10 percent in error, the latter would represent

only a 1-percent error in the over-all flow.

The numerical integrations of the first-order

problem, which are reported in reference 10, ap-
pear to be in error, particularly with regard to at

(see table IV). Note that for z=l, /3=0, -/=1.4

the present approximate method and numerical

integrations both give a_ =0.48, whereas reference

10 gives a_ =0.40. These can be compared with
the value a_ _0.47 from the cone reslflts of refer-

ence 2 (see table IV), indicating better agreement

with the present results than with reference 10.
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FI(;URE 2.----Results of approxinmte analytical sohition of zero-order problem for a= 1_ _= 1.4_ ,_ud v_rious values of ft.
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GENERAL CHARACTERISTICS OF FLOW FIELDS

ASSOCIATED WITH POWER LAW SHOCKS

It was previously shown that, in tile limit

1/(316) 2- _0, a shock shape of the form R0=z m

reduces the hypersonic-shmder-l)ody equations to

a set of oMinary differential equations with 7 r/Ro
as the independent variable. The alternate shock

shape parameter fl--/2 (1--1)///(¢+1)- --- --_ --- -.J was also

introduced. Emphasis was placed o,l the range
0 </3_< 1. In the present seetion, the general char-
acteristics of the zero-order flow fields associated

with different values of fl (including fl_0, fl.._l)
will be discussed.

Witlt ¢r=0, equation (39) becomes

(5'+ 1) "+_ _70ol+a (, O,L'_

0o'0o fl lq 4#--1)" (0o)" k." .0o/|

/
0o(1) =1 0o(1)----(3'+1)/(3,--1 ) 3

Equation (65) is singular when 0o--0. The cor-

respondingvalue of y is denoted by _b. It can then

be shown that for 00-->0, 7-_7b, equation (65) has
the following asymptotic forms:

_<v: Oo= ho(,-,7o) _-¢

13_"t: Oo "_ [£'Oe L° ' _b _ -- oo

3"

v<_<2v: Oo_ tG/(-,7) a-" n_=- o_

l (66)

J
where [(0 and Lo are positive constants. Asymp-

totic solutions were not found for _>_2-},. Also,
recall that 7_=0 for ¢/=1.

1.0 |Curve ........ ]-

-_ a B,O --- 2b B:O
8 | c O<(B : 3/4)<,

_" d ,B:t
.6 _ e 1<(/3=1.2)<1.4

_[ f t.4<f_<2.880

4 _ of zero-order equations. //

----- Schematic

0 _-I--I"--_--'--LT---"---A--_P _
-.6 -4 :2 0 .2 .4 .6 .8 1.0

FIaVRE 3.--Variation of 00 with n for a--0, v--1.4, and

various values of ft.

{o) [b)

(c) (d)

{el (f)

(a) _<0.
(b) _ O.

(c) 0<_<_.
(d) _= ].

(e) 1 <t_,_"/.

(f) v<tS<2"_.

FIea-RE 4.--Sehematie representation of flow fiehts for

o-=0 and various values of B.

The formal solutions of equation (65), for con-

stant % can now be represented in the 00,7 plane

for various values of _. This is done in figure 3.

The corresponding physical flows are given in

figure 4. The value of _ defines the shock shape.

The corresponding value of 70 defines the body
shape (since r_=7_Ro). For v0 positive, the body

is in the first quadrant of the x,r plane (fgs. 4(a)

to (e)), while, for 7_ a finite negative number, the

body is in the fourth quadrant (fig. 4(e)). The

body and shock are similar in shape except for
,_, 0,--_. The drag associated with these

flows can be found fi'om equation (29). For

fl>l it is seen that the drag is infinite at x=0

and thus cannot correspond to a physical situation.

Except for the fl=O case, each flow fidd in

figure 4 is not everywhere consistent with the

ori_nal use of the hypersonic-slender-body equa-
tions. In particular, conditions at x--0 violate

tile hypersonie-slen,ler-body approximations for

all except H_e fl=0 case. However, in each case,

there is a region in the vicinity of the shock

(excluding x _0) for which the flow field is con-

sistent with the approximations. If a streamline

in this region is taken to define a body shape (see

I
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sketch (c)), then tile flow external to this stream-

line is accurately described, al least initially, by

the solutions obtained in the body of the report.
Thus, oven the 5>1 cases yMd flows, portions of

which are physically realistic and consistent with

the hypersonic-slender-body approximations.
The streamlines downstream of the shock are

defined, parametrically (with _ as parameter), by

1 1

_:=\Oo? --=_Tr,\0o/ (67)

where (x_,r_) are the coordinates or a streamline at

its intersection with the shook. The ratios x/x,

and r/r_ are thus funelions only of n (for speciflod

or, % and ¢0. Note that 0o arid _ are not constant

along streamlines which do not pass through the

origin. The downstream extent to which such
solutions are valid has not been resolved.

27777777'77//-/77,

7777-77777////X

(c) Flow wh,.li ¢>I.

A similar discussion can be made for the o-=1

case. Considering equation (39), the asymptotic

form for 0,, as 0o >0, , -_,_, is, for _<1,

T

where r/_=0 for fl=l. The asymptotic form
when _>1 has not boon determined. Since the

flow is axisymmetric, _ cannot be negative and the
integral curve is confined to the first quadrant of

the 0o,,1 plane. There is a sing_flarity at _=0.

If a streamline, otltcr than 0o=0, is taken to define

a body, then the external flow corresponds to the

flow about an open-nosed body of revohition.

The leading-edge angle has a finile nonzero vahle
for such flows.

CONCLUDING REMARKS

An approximate analytical niethod has boon pre-

sented for obtaining the zero-order and firsl-order
solutions for hypersonic flow over slender blunt-

nosed bodies following a power law variation.

Wedge, cone, and constant-energy flows are in-

eluded as special cases. The solutions are found

within the framework of hypersonic-slender-body

theory.
The approximate soluiions are compared with

numerical integrations of the zero- and first-order

problems. The agreement is generally good, par-
tieularly for fl near zero and _ near one. The

shock is relatively close lo the body for the hitter
cases. Sufficient numerical results have boon

talmlated to permit estimates of the accuracy of
the approximate melhod fiw various combinations

of/7 and 3'.

The general characteristics of flow fields asso-

ciated with power law shocks have also been dis-

cussed. It is pointed out that values of the shock

shape parameter fl outside the range 0 <_ < 1 also

give rise to flow fiehls, portions of whM_ arc

physically realistic and consistent with the

hypersonic-slender-body approximations.
The accuracy of the approximate solulions

could be improved by following more complex pro-

cedures. For example, the flow near the shock

can bo expanded in a Ta3qor's series about r#=l,

aild lhe flow in the vicinity of the body can be

expressed in terms of the asymptolic solutions,
each nmltiplied by an arbitrary constant. Those

constants can then be evahialed by nmlehing the

Taylor's series and the asynipl,oiic expressions ill

some point between the shock and body. The

Taylor's series then represents the flow bet.ween
the match point and the shock, while the a_ymp-

retie expressions represent the flow between the

body and the match point.

LEWIS RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CLEVELAND, OtIIO, Yovembtr I7, 1958
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APPENDIX A

SYMBOLS

eonsttmts legs. (57), et seq.) "/
eonslnui (eqs. (11))
eonshmls (eqs. (17), (B5), (58), et_

seq.) 5b
drag coemeienl (eq. (25))
pressure coefficient (eq. (20))
eonslanls (eqs. (44)) rl
specific heat at constant volume
forebody drag 0o(n)
pressure similarit,y variat)le (eqs.

(11))

integral (eq. (30))
eonsta, nt (eq. (42)) a
stxeamwise length of body

free-streanl .Ma('h ]mmber _o(rl), el(V)
shock shape power law exponent

(e% (6))
constants (eqs. (49)) ¢.(n), Ct(rl)

pressure
dynamic pressure, _+_'_/2 Subscripts:

lateral displacement of shock b

lateral displacement of sho(,k in s
limit, as 1/(3/a)=-->0 0

body shape 1
(enlperature co

velocities in (7,7) direction, re- Superscripts:
speetivtqy

streamwise and lat end eoordinah's, (--)

respectively ( )
alternate shock shape parameter,

ratio of Sl)eeifie heats

eharae! erisiie slope, equals R0(L)/L
fl)r flows with power law shoeks

char,wteristic body slope, _(L)/L

perturbation parameter, (_1-'_/.1/a)2

laleral coordinate similarily varia-
ble, r/Ro (eqs. (8))

zero-order slrenm flmelion simi-

larity variabh, (eq. (36))

x (eqs. (8))
densily

0,1,2, for planar, c3qimlric'tl, and
spherical flow, respectively

lateral veloeii 3" similarity varin,blc
(eqs. (11))

density similarity x-arialde (.eqs.
(11))

quantity evMuated at body surface
qua.ntily evMuated at shock
zero-order solution

first-order solution

undisturbed free-stream value

barred quanlitie._ are dimensional

unbarred qmmiities are nomtimen-
sional (eqs. (1))

primes indieate differen I in lion with
respect to n

APPENDIX B

DERIVATIVES OF DEPENDENT VARIABLES AT n I

The approximate analytic solutions require a
knowledge'of derivatives of the dependent vari-
ames at 7--1. These are summarized as follows.

From equations (13) and (14) it. can be shown
thai

1

_'0(1)= (7+ l)_ [3(y+l)(a+l)_--4ay] (gl)

2
F;(1) = (7_ 1)_ (_+l)Z [(2-r-- 1) (7+1) (¢+ 1)fl

--2,rv(7-- !)1

, 1 [3('r+ I) (o-+ 1) B--2,r ('r-- 1)]
¢o(1) =_-_-- ])=

20

(]32)

(B3)
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_'0'(1)= 3(y+l) l /i=q_ q-_ (¢+1)/i yq-Iy--1 ;}

+[(5--23,) (°_)' fl-l- o-3(̀',/--1)3,+1}_3'_] F_(1)_[(2_@(°" 24-1)/i_{. ¢ (3'--1)= .[_Y2@_1]_o(1)3,_}_1 }
(B4)

Similarly, from equations (16) and (17),

I (_, ")' --2('/--I) ([72_IF;(I) "/-bl o, (.l-}-l)(_-kl)/ii_{3`+l)" l _o,(I)Oo-_(];\_--_o/.=, (¢q-1)(3`q-l) 2 --_ (1)q-_,¢-} 4 "2 (3`--1)_] 1--_o0(1)

Fy-kl ,,., 2¢ ]Y,(l') v-inyq-I ,,,x.(3`-}_l)(¢+1)/i'1¢',(1)"[+3`L._--,_0"'%-i 1,'_(1) 2 kv-l_°°k_J-v _ .J_-_,l)f =-b's-G'a'
(B5)

APPENDIX C

BOUNDARY CONDITIONS AT _=1 FOR FIRST-ORDER PROBLEM

Ill the first-order problem, the shock is loealed

al R=_(147a,_) or, equivalently, at _l=l-t-ale

(see ske.tch (d)). It is desired to specify boundary

conditions at: n= 1.

2 o.,1

(d) Shock shape.

Let Q be any quantity whose value is known at
the downstream side of the shock (designated by

subscript ,). Then, expanding in a Taylor's series

al)oul the sho(q,: at constant x yMds

+ (el)

Consider Q 1o be the vertical velocity. Equation

(C1) becomes

, /'5rN
".='=*"-\a,),"" (c2)

(')dR 1--_ , orBu(, from equation (4e), v,=3`_l 7t.r

]
"2-- m

since dR/d.r=mgF-' [l } e( m-)tt,]. Equation

(C2) then becomes, by lelting r---m( =-I (_,,+e_o_)

_ o,_¢)]
r

--_,o(,1)al_

(C4)
so that,

2 ( 1 F2--m -y_-I g,,0(1)l" _
_o,(1)= 3`--+1_t--_+°'L .....I ,,J

(05)

Expressions for FI(1) and ¢,t(1) are found similarly.

The results are given in equalions (17).
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APPENDIX D

ASYMPTOTIC SOLUTIONS OF FIRST-ORDER EQUATIONS

Asymptotic solutions of tile first-order equa-

tions, near 0o_0, are found herein.

From equations (56), tile continuity and energy

equations show

__1=. `Pl .__ (1 . t _) 0_f0_ (l-}-_) `P! (|0o @/_'.10_u
_b0 _7-- _o " .] r/--`p0

(Dla)

dOo+ GlO_o

(Dtb)
Consider solutions of the form

`P' --O_,'(L_+3t_Og-f- . . .) (D2a)
r/-- ,Pc>

For N#_, N-}-P#fl, the corresponding values of
¢_ and F, are

¢_ OV { N+ l N-! P + I "_-- o L,q 3[,og+... +E,o_o
¢,,-- \N--_ N+P--3 /

(D2b)
F, o,,,FvN+'r- 3

For N--O, P=I, E'_l,l:Gl,l--:0:

_= . . .Lt.l+.][l
$100@

F_ _ "Y--Or , 23,--3 ....
7_2=-7 -"_,_*1 _:"_,_°*" "

at,.,_ (.r-B-a)(l-O)n_ -_
_= 2 (2y--3) Fo(_o)

For N=3, P--l, Gi.2=0:

`p,._ ._O_o(O+ M_ ..,oo+ . . .)
_7-- `po

¢a 2 0_- E
= o[ -,,',+ (2+_)M,,20o+...]

_-_=o_[o+ (2_+_-_)at_,.:o,,+...1

E, ,2--2 (1 +fl) (2v+/3v-- _) F, (no)

(D4a)

(D4b)

-I-'y(N+P) +'Y_B 3I, Og+ ,] ._a_0_ (D2e)NfP--3 " "

The appropriate values of N and P can be found

by substituting equations (D2) into the momen-

tum equation (eq. (55b)) and considering 0°_0.

This will be done for 0_3<1, _=0, and _=i,
respect ively.

CASE O<B<]

In the vicinity of Oo= O, the momentum equation
becomes

dOo (,_o-¢0)+° ,.Oo,,-+_
(D3)

Substitution of equations (D2) into (D3) yMds

the following three independent solutions:

ForN=--O'--3)/% P=I, E_,a GL3=O:

/ l`p,,a Oo _' (Li,3+ Mi,aOo_. . .)
rl--`po

_-£¢ _ ]
¢,,_ °-, r -3L,..,_ _T3 M, _Oo++o-°° k_+_-_+_(i-_) . '

F.. _ --'-_ [0q "r:'1'r*3L:_00 •
3/_,a_ ('_-- 1)fl%_-"

L_, a -2")' 0'+'r3--3) Fo(n_)

(D4e)

For solutions satisfying `p_(%)=0 it is necessary
to omit eqm_tions (D4c).
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CASE .8=0

The momentum equation can be written

o_d[_,1/(,7-_,o)] t_F,,_ d (F,/Fo)
--(_+1) 0; d0o d0o

--_; (1+2,,) \n--_o]--0; \Fo ¢o/_°
where

°' _(_+])nq'2°_(_+1)n_ \v-l/ ;1

The fifllowing three independent solutions result:

For N----0, P=2, (;',1./=0:

_o:0+3I,,, 002+...

¢11 - ,3 o,

(DSa)
1"1 1 ctJ_,33` 1¢ m±

_)_ -_',J) _- -ill , 1 t-'0| • • •

3I,., at3`-- 1)2 t/'_

Fern 0, P=2, E_,_=0:

_1,2 =0+M_,2 2,00- 7 . . .
7/-- V'o

I_1,2 3 - -

),; =o+_ :u,.., og+...

FI,2 ,--, __33'
at,.

3/,.2__ o'(V--1)2 I/v __ 3f,._

G_.2 -- 33`(o'@ 1) rl_:[ (3`@ 1) E,(_b)] (_'+J)/' --

For N=--I, P=-2, GI.3=Ej,a 0:

¢_.3 =0;_ (L,.3+ 3[_,30_ + . . .

1_1,3 -I 9

_-o=0o (0+2:]/_.a05+ . . . )

_,3_ 0(_ (0+2y3I,.3 0_+ . . .

=Ill .3 a(3'--1)2 _/*

Li .3 --2"l(a+ 1) _7_,I(3`@ 1)Fo(_/)] c,+_>/,--

EI, !

(D5b)

3 3/1.1

2 El,1

(D 5c)

When the 1)oundary condition ¢_(nb)=0 is to be

satisfied, equalions (D5c) are omitted.

CASE 0=1

- Oo 3"-- 1 Oo ¢]o _

Fo,' this case rt-rto=(),0_=_l ), _-_)'=_5'
27+o--1 (T--l) (a--l) 2"r +*--1

Recall thai

The momenlum equalion can bc wrilten

,_-- 1 0o,P-* d [¢,/(_--9°)] +/70 d (F,/Fo)
3` dO° dO°

+ (v-- 1) (,_v--v+4) n__ , (PI
2y_(o-+ 1) r/--¢o

(Fl 0

The following three hu]epemlent solutions are

oblained :

Fern O,P--(23`+a--1)/[y(¢+1)]:

(_) o--0,2 (i.e., P¢_):

_, ._ -- L_ a + (p_ l ) 3 t, ._Og_I ...

¢,o L_.l±(I'+l)M].,Og+...

Fo =--(_--UL,.,+[T(P+ ])--_]M,.3g+ . . .

(_-- 1) (a-- 1)

3/_.i _ (43`__ 137_ o.T+ 8) Eo -,(o+_3

L,,, - 2v_(o-+]) P [v{P+ ])- 1]F,,(O)

(2) o-=1 (i.e., P=I):

¢1,1 LI, I-I 0@ • • •
_7--_Po

_I'_-- L_+0+...
_bo

Fl,___ (3'--1) L_,t-l-G_.lOo-i-
/_0 " " *

GL_ 2y:--7y+4

L_, _-- 2T_Fo(0)
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These can be pu{ in the unified form,

a:0,1,2:

_o,., --L,.i_ (P--l) M,.,o_+...

¢l'_-- LI.,+]_--¢[ (P+_)36.,0_+ • • •
_o

F'.'= _ (y--l) L,.,÷[_(P+I)
Fo

_]M,._o_'+...

('r-l) (q-l)

3[i.,_(4V2_13y__V@8)[( ° _ (a+l)

L,., --2_2(a + I ) P [y( P + I ) -- I ] Fo(O)

TECHNICAL REPORT R--15 NATIONAL AERONAVTICS AND SPACE ADMINISTRATION

v,did for For N:I, P=(27+_--l)/[y(_-}-l)], G_.2=0:

(D6a)

_"'_ oo(o+M,,3g+...)
v/-- _Oo

)_o \ ' '"

3/1 2 (3y+_v-- 2)P(/(o)- 4o+n

(D6b)

For N------(7--1)/% P----(27+---1)/[7(a+l)],

El,3 Gi,3=0:

7-1

i P¢,,s Oo _ (LI,_ FM, ._Ou+ . . .)
rl--_o

Ml,__
LI,3

\"--vl_+ !-- •.

_ [-(:_7+_v-2)+62_-I)(_-1) (_v-_+4)

(y-l)(¢--l)

(yP+ l -- 2_,) tf, '("+_)

vP (_P + 1- v) k; (0)

When the boundary condition ¢l(n_)=0 is to be satisfied, equations (D6c) are omill(,d.

(D6c)
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